Abstract

Light, one of the most important natural resources for plant species, significantly influences the biomass yield and nutrient uptake capacity in plants. Light sources with different spectra combinations can impact the bioavailability, toxicity, and solubility of heavy metals in soils by altering the concentrations and fractionations of soil dissolved organic matter (DOM). A series of light irradiation treatments were performed to evaluate the influence of red, yellow, and blue lights on the characteristics of DOM in the rhizosphere soils of Arabidopsis thaliana. The results showed that monochromatic red light significantly raised the levels of DOM and proportions of hydrophilic fractionations in the rhizosphere of A. thaliana relative to the control, while monochromatic blue light had the opposite effect. Moreover, the proportions of hydrophobic acid, which can mobilize Cd effectively, also raised with increasing doses of red light, which stimulated Cd mobilization. The application of yellow light not only increased the levels of hydrophobic acid in monochromatic red light treatment but also decreased the proportion of hydrophobic fractions in monochromatic blue light treatment, partially weakening the negative impacts of pure blue light on soil Cd activation. Moreover, DOM from the combined red, yellow, and blue lights resulted in a significantly stronger Cd extraction efficiency than the other light irradiation treatments, consequently enhancing the Cd phytoextraction efficiency of A. thaliana. The findings of this study demonstrated that a suitable light combination could enhance the phytoremediation effect of A. thaliana by activating soil Cd, and this method can be extrapolated to the real field, where light irradiation can be easily applied and modulated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call