Abstract

Plant invasions have a huge impact on the health of ecosystems and human well-being. The invasion risk varies with the introduction pathway, the propagule pressure, and the genetic diversity of the founding population. We performed a systematic review and meta-analysis of 30 studies reporting the genetic diversity of 31 plant species in their invasive and native ranges. We evaluated if patterns of genetic diversity differ between ranges and whether these responses are influenced by life-history traits, hybridization, polyploidization, and habitat condition. We found that invasive populations had significantly lower genetic diversity and higher inbreeding than native populations. In fragmented and degraded habitats, the genetic diversity of invaders was lower, but inbreeding was not affected. Polyploid invaders with hybrid capacity also showed lower genetic diversity. Invasive herbs with vegetative propagation were more sensitive to the loss of genetic diversity and had higher levels of inbreeding. Our synthesis showed that the genetic response in the invaded range could result from historical processes, such as founder and bottleneck events. Traits such as selfing are more likely to preserve the signatures of founder events and influence the genetic diversity in invasive populations. Additionally, clonality seems to be the predominant reproduction system in the invaded range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call