Abstract
The study was aimed to investigate the effect of chemical modification of branched poly ethyleneimine (PEI) on chelation of transition metal ions (Me2+) including Zn2+, Cu2+ or Ni2+ and sol–gel conversion thereof. To modulate chelation property of PEI, imidazole moieties were introduced into the polymer backbone by carbodiimide chemistry at different molar ratios of fmoc-protected l-histidine. The synthesis was characterized by 1H-NMR spectroscopy and size exclusion chromatography. Potentiometric titration of PEI/Me2+ aqueous dispersions showed formation of stable complexes at pH above 5 depending on the degree of l-histidine substitution. FT-IR spectroscopy showed the imidazole ring of l-histidine was involved in the coordination interactions between PEI and Me2+. Addition of Zn2+ to PEI solution induced sol–gel conversion at a critical molar ratio decreasing by a higher degree of l-histidine modification. The gelation process led to formation of stable globular nanostructures as confirmed by atomic force microscopy with projected mean diameters less than 200 nm. Cellular experiment showed that l-histidine substitution enhanced cyto-compatibility of PEI, moreover cytotoxicity decreased significantly upon coordination of Zn2+ with the polymers. Conclusively, the coordination complexes of Zn2+ and l-histidine substituted PEI could serve as a nano system for biomedical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Inorganic and Organometallic Polymers and Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.