Abstract
Previously, we reported allyl transfer reactions of allyl bromide and allyl phthalimido-N-oxyl substrates with hydrocarbons that result in CC bond formation. In both cases, efficient chain transfer processes along with high reaction yields were observed. Since PINO chemistry leads to an environmentally friendly method of hydrocarbon functionalization, additional studies were performed in order to improve the process. To expand the utility of this reaction, we carried out experiments to optimize reaction conditions and tested the effect of Lewis acids and low temperature initiators. Although allyl-PINO substrates reacted slightly slower than the bromides, the reactions were cleaner with little or noside products. The chain lengths for these reactions were compromised at lower temperatures, attributable to the high activation energy required for the hydrogen atom abstraction by PINO. The addition of a Lewis acid catalyst (AlCl3) improves the product yield and reaction rate, possibly due to the formation of a PINO/AlCl3 complex which lowers the activation energy for hydrogen abstraction step.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.