Abstract

The effect of Lewis acid on the structure and H2 productivity of a diiron dithiolate complex was investigated by using density functional theory (DFT) calculations. When a model molecule of [(CH3SH)(CO)2Fe(p)(mu-SCH2NHCH2S)Fe(d)(CO)3] was geometrically optimized, two isomers were found: one is the unrotated structure (1) with no ligand between two Fe atoms and the other is the rotated structure (1*) with one CO ligand between two Fe atoms. The energy of 1* was higher than 1 by 6.4 kcal/mol in a vacuum. DFT calculations also revealed that all Lewis acids bound to the rotated structure more strongly than to the unrotated structure, leading to the stabilization of the rotated structure. In particular, when AlCl3 is used, the rotated structure (1*/AlCl3) is more stable than the unrotated one (1/AlCl3) by 1.2 kcal/mol in a vacuum. The stabilization of the rotated structure arises from both the stronger basicity of the mu-CO ligand than the axial CO ligand and the increase of the bond strength between the mu-CO ligand and Fe(p) atom upon binding of Lewis acid to 1*. Calculation of energy barriers during electrocatalytic H2 production revealed that 1*/AlCl3 could efficiently produce H2via a chemical-electrochemical-chemical-electrochemical mechanism. The analysis of the energy level of the lowest unoccupied molecular orbital showed that 1*/AlCl3 may produce H2 at significantly lower reduction potential as compared with 1*. It is also found that the catalytic activity decreases with increasing polarity of the medium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call