Abstract

Objective(s):MicroRNAs (miRNAs) could regulate many cellular processes such as proliferation and differentiation. let-7a miRNA is one of the key regulators in the developmental transition of retinal progenitor cells into differentiated cells. Current evidence suggests that mesenchymal stem cells (MSCs) can isolate from various tissues such as bone marrow and conjunctiva. In this study, we investigated the effect of let-7a overexpression on induced differentiation of conjunctiva mesenchymal stem cells (CJMSCs) into photoreceptor-like cells.Materials and Methods:After isolation and characterization, CJMSCs were transduced with lentiviruses containing let-7a or empty vector. The effect of let-7a overexpression on expression of photoreceptor-specific markers was evaluated by quantitative real-time PCR (RT-qPCR) after 28 and 42 days of transduction.Results:The relative expression of rhodopsin and recoverin genes was evaluated by RT-qPCR in let-7a overexpressing cells, control vector transduced cells and untransduced CJMSCs (control cells). Our results indicated that following overexpression of let-7a, after 28 and 42 days of transduction, significant up-regulation in the expression of recoverin (574.7 and 43.9 folds) and rhodopsin (3334.7 and 53.1 folds) were observed, respectively.Conclusion:Our findings indicate that overexpression of let-7a microRNA can increase the expression of photoreceptor-specific genes in CJMSCs. Moreover, it is prospective that let-7a overexpression can use as an alternative protocol for the differentiation of mesenchymal stem cells into photoreceptors. It seems that the effect of let-7a on the differentiation of CJMSCs into photoreceptors is also time-dependent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.