Abstract

This paper presents a numerical analysis of the conjugate heat exchange inside a square enclosure full of a copper-water nanofluid. The enclosure also contains a heat-generating solid triangular block (a source of heat) at the center. While the horizontal walls of the enclosure are viewed as adiabatic, its perpendicular walls are operated at a consistently low temperature. The second order upwind scheme is used for the convective term and SIMPLE algorithm, to lead the numerical analysis and solve the discrete equations using the commercial software FLUENT 15.0. The consequences of the numerical investigations are then used to clear up the effect of length-ratio and transfer of heat. As per observations, the expansion in the length-ratio influences the rate of heat transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.