Abstract

The length modulation of electron transport properties for molecular devices based on fused oligothiophenes has been investigated theoretically using a combination of non-equilibrium Green's functions and first-principles density functional theory. The results show that the lengths of the molecules have a distinct influence on the position of negative differential resistance (NDR) of the molecular devices. By exploring the effect on transmission properties of substituent groups, hexathieno[3,2-b:2',3'-d]thiophene with -NH2 and -NO2 substituents (model L) can be regard as a good candidate of multifunctional molecular device, which shows excellent rectifying performance (the largest rectification ration is 14.3 at 1.2 V) and clear NDR behavior (at 1.4 V).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.