Abstract
The sensitivity of skinned cardiac muscle bundles to Ca2+ is a function of sarcomere length. Ca2+ sensitivity is increased as fiber length is extended along the ascending limb of the force-length curve and it has been suggested that this phenomenon makes a major contribution to the steep force-length relationship that exists in living cardiac muscle. To gain greater insight into the mechanism behind the length dependence of Ca2+ sensitivity isotopic measurements of Ca2+ binding to detergent-extracted bovine, ventricular muscle bundles were made under conditions in which troponin C was the only major Ca2+ binding species. Experiments were designed to determine whether 1) Ca2+-troponin C affinity varies in the sarcomere length range corresponding to the ascending limb of the force-length curve, and 2) Ca2+ binding correlates with length per se or with changes in the number of length-dependent cross-bridge attachments. Measurements were made of Ca2+ binding in the rigor and relaxed states. The latter state was produced by suppressing actin-myosin interaction with the phosphate analogue, sodium vanadate. After vanadate treatment it is possible to obtain a complete Ca2+ saturation curve in the presence of physiological MgATP concentrations and at constant sarcomere length. The results show that the binding of Ca2+ to the regulatory site of cardiac troponin C is length dependent but this length dependence is actually a dependence on the number of attached cross bridges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.