Abstract

Abstract P-wave assessment is frequently used in clinical practice to recognize atrial abnormalities. However, the use of P-wave criteria to diagnose specific atrial abnormalities such as left atrial enlargement has shown to be of limited use since these abnormalities can be difficult to distinguish using P-wave criteria to date. Hence, a mechanistic understanding how specific atrial abnormalities affect the P-wave is desirable. In this study, we investigated the effect of left atrial hypertrophy on P-wave morphology using an in silico approach. In a cohort of four realistic patient models, we homogeneously increased left atrial wall thickness in up to seven degrees of left atrial hypertrophy. Excitation conduction was simulated using a monodomain finite element approach. Then, the resulting transmembrane voltage distribution was used to calculate the corresponding extracellular potential distribution on the torso by solving the forward problem of electrocardiography. In our simulation setup, left atrial wall thickening strongly correlated with an increased absolute value of the P-wave terminal force (PTF) in Wilson lead V1 due to an increased negative amplitude while P-wave duration was unaffected. Remarkably, an increased PTF-V1 has often been associated with left atrial enlargement which is defined as a rather increased left atrial volume than a solely thickened left atrium. Hence, the observed contribution of left atrial wall thickness changes to PTF-V1 might explain the poor empirical correlation of left atrial enlargement with PTF-V1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call