Abstract

AbstractThe effect of the configuration of leading edge cut on the aerodynamic performance of ram‐air parachutes is studied via two‐dimensional flow simulations. The incompressible Reynolds‐averaged Navier–Stokes equations, in primitive variables, are solved using a stabilized finite‐element formulation. The Baldwin–Lomax model is employed for turbulence closure. Flow past an LS(1) 0417 airfoil is investigated for various configurations of the leading edge cut and results are compared with those from a Clark‐Y airfoil section. It is found that the configuration of the leading edge cut affects the lift‐to‐drag ratio (L/D) of the parachute very significantly. The L/D value has strong implications on the flight performance of the parachute. One particular configuration results in a L/D value that is in excess of 25 at 7.5° angle of attack. Results are presented for other angles of attack for this configuration. Copyright © 2004 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call