Abstract

Temperature sensitive copolymers were prepared by free radical crosslinking copolymerization in aqueous solution with different molar percentage of N-isopropylacrylamide (NIPA) and acrylamide (AAm) monomers. N,N′-methylenebis (acrylamide) (BIS) and ammonium persulfate (APS) were used as a crosslinker and an initiator, respectively. The steady-state fluorescence (SSF) technique was used to determine the low critical phase transition temperature (LCST) for PAAm-NIPA copolymers. Swelling experiments were performed in water at various temperatures by real time monitoring of pyranine (Py) fluorescence intensity, I which decreased as swelling proceeded. The Stern–Volmer equation is modified for low quenching efficiencies to interpret the behavior of pyranine intensity during the swelling of PAAm-NIPA copolymers. The Li–Tanaka equation was used to determine the swelling time constants, τ 1 and the cooperative diffusion coefficients, D 0 from fluorescence intensity, weight and volume variations of the copolymers at various temperatures. It was observed that τ 1 first increased up to LCST, and then decreased; naturally D 0 decreased up to LCST and then increased upon increasing temperature. It was understood that (LCST) increases as PAAm contents increase in the PAAm-NIPA copolymers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call