Abstract
This experiment (replicated 3×3 Latin square design) was conducted to investigate the effects of lauric acid (LA) or coconut oil (CO) on ruminal fermentation, nutrient digestibility, ammonia losses from manure, and milk fatty acid (FA) composition in lactating cows. Treatments consisted of intraruminal doses of 240g of stearic acid/d (SA; control), 240g of LA/d, or 530g of CO/d administered once daily, before feeding. Between periods, cows were inoculated with ruminal contents from donor cows and allowed a 7-d recovery period. Treatment did not affect dry matter intake, milk yield, or milk composition. Ruminal pH was slightly increased by CO compared with the other treatments, whereas LA and CO decreased ruminal ammonia concentration compared with SA. Both LA and CO decreased protozoal counts by 80% or more compared with SA. Methane production rate in the rumen was reduced by CO compared with LA and SA, with no differences between LA and SA. Treatments had no effect on total tract apparent dry matter, organic matter, N, and neutral detergent fiber digestibility coefficients or on cumulative (15d) in vitro ammonia losses from manure. Compared with SA, LA and CO increased milk fat 12:0, cis-9 12:1, and trans-9 12:1 content and decreased 6:0, 8:0, 10:0, cis-9 10:1, 16:0, 18:0, cis 18:1, total 18:2, 18:3 n-3 and total polyunsaturated FA concentrations. Administration of LA and 14:0 (as CO) in the rumen were apparently transferred into milk fat with a mean efficiency of 18 and 15%, respectively. In conclusion, current data confirmed that LA and CO exhibit strong antiprotozoal activity when dosed intraruminally, an effect that is accompanied by decreases in ammonia concentration and, for CO, lowered methane production. Administration of LA and CO in the rumen also altered milk FA composition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.