Abstract

An analytical model is established to study the influence of lattice distortion and fraction of Hf on the yield strength of the BCC TiNbTaZrHfx multi-component high entropy alloys (HEAs). Meanwhile, the mechanism of solid solution strengthening caused by lattice distortion is also discussed in the HEA. The distorted unit cell is introduced to indicate the lattice distortion effects induced by the differences of the atomic size and shear modulus by doping other elements in Ti-based metal. The results show that the calculated values of the alloying yield strength considering the path of least resistance are obtained with regard to various grain sizes for the equiatomic TiNbTaZrHf HEA, which is well in line with the experimental results. Furthermore, it is predicted that the alloying yield strength is the largest value in the case of the same grain size for the Hf atomic fraction of 0.122. The meaningful modeling could provide a theoretical method to investigate the yield strength and alloying design of other BCC HEAs in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.