Abstract

BackgroundLateral wedge insoles (LWIs) are non-surgical interventions used in medial knee osteoarthritis (KOA) aiming at restoring correct joint biomechanics. However, the mechanical efficacy of LWIs, based on modulation of the external knee adduction moment, is partially proved and high variability in response to these devices was observed. Research questionThe principal aim of the study was to employ subject-specific musculoskeletal models to investigate the immediate effect of LWIs on the medial compressive force (MCF) in a population with medial KOA and varus alignment. MethodsFifteen adults (8 healthy controls age 56±3.4, BMI 25.2±2.2, hip-knee-ankle angle −1.3±2.3; and 7 KOA participants age 62±6.6, BMI 31.7±3.9, hip-knee-ankle angle 6.3±2) were recruited. Subject-specific LWIs were designed in CAD based on shape capture of the foot and manufactured via 3D printing. The required degree of heel post was added to the orthotic shell to create insoles with 0°, 5° and 10° of lateral wedge. Gait data were collected for each condition and a musculoskeletal model implemented in the Anybody Modeling System estimated the CFs normalised per bodyweight. The effect of the LWIs with respect to the baseline on the peak and the impulse of the MCF were tested with a Wilcoxon non-parametric test for paired samples. ResultsFor the KOA group, LWIs did not reduce significantly the impulse and the peak of the MCF. No dose-response trend according to the degree of wedging was observed. A high inter-subject variability was found: the impulse of the MCF varied between −12%, +10%, the peak between −5%, +7%. Moreover, LWIs had no consistent effect on shifting the load from the medial to the lateral compartment. SignificanceSubject-specific response to LWIs in a cohort of medial KOA patients was observed. Further studies are necessary to maximise the mechanical effect of LWIs on restoring normal knee joint mechanics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.