Abstract
The development of lipid oxidation in oil-in-water (O/W) emulsions is widely influenced by the properties of the interfacial layer, which separates the oil and water phases. In this work, the effect of the structure of the interface on the oxidative stability of surfactant stabilized O/W emulsions was investigated. Emulsions were prepared with either single Tween 20 or Tween 20/co-surfactant mixtures in limiting amounts. The co-surfactants, Span 20 and monolauroyl glycerol have the same hydrophobic tail as Tween 20 but differ by the size and composition of their polar headgroup. Metal-initiated lipid oxidation, monitored through the measurement of oxygen uptake, formation of conjugated dienes and volatile compounds, developed more rapidly in the emulsions stabilized by the surfactant mixture than in the single Tween 20-stabilized emulsion. The reconstitution of Tween 20/co-surfactant films at the air–water interface and their surface-pressure isotherms highlighted that, contrary to single Tween 20 molecules, Tween 20/co-surfactant mixtures exhibited an heterogeneous distribution within the interfacial layer, offering probably easier access of water-soluble pro-oxidants to the oil phase. These observations provide direct information about the link between the homogeneity of the interface layer and the oxidative stability of emulsions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.