Abstract

Embedding PCMs in building materials has attracted great interest due to their ability to store thermal energy. Storage of heat and cold is an efficient way to save energy. Considering a lightweight earth-based material, mixture of soil with a high straw content, the present work aims to improve its thermal properties by using phase change materials (PCM). In this investigation, a laboratory experimental campaign and subsequent numerical analysis were carried out to examine the impact of incorporating PCM within the lightweight earth-based material. Materials' hygro-thermal properties (thermal conductivity, specific heat capacity and water vapor permeability), determined experimentally in laboratory, have been considered to calculate energy consumption and occupant's comfort in a typical single-family housing. Experimental results showed an improvement of the lightweight earth-based material thermal conductivity and specific heat capacity, as well as a slight reduction in its water vapor permeability depending on the PCM content. These modifications in the lightweight earth-based material properties lead to predict an improvement of occupants' thermal comfort and a reduction of energy consumption in buildings that will be made with such a material. Finally, this study underlined the existence of an optimal phase change temperature regarding climate in which the building evolves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call