Abstract
Anthrax toxin action requires triggering of natural endocytic transport mechanisms whereby the binding component of the toxin forms channels (PA63) within endosomal limiting and intraluminal vesicle membranes to deliver the toxin's enzymatic components into the cytosol. Membrane lipid composition varies at different stages of anthrax toxin internalization, with intraluminal vesicle membranes containing ~70% of anionic bis(monoacylglycero)phosphate lipid. Using model bilayer measurements, we show that membrane lipids can have a strong effect on the anthrax toxin channel properties, including the channel-forming activity, voltage-gating, conductance, selectivity, and enzymatic factor binding. Interestingly, the highest PA63 insertion rate was observed in bis(monoacylglycero)phosphate membranes. The molecular dynamics simulation data show that the conformational properties of the channel are different in bis(monoacylglycero)phosphate compared to PC, PE, and PS lipids. The anthrax toxin protein/lipid bilayer system can be advanced as a novel robust model to directly investigate lipid influence on membrane protein properties and protein/protein interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Biomembranes
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.