Abstract

Deformation mechanism of a laser weld on neutron irradiated AISI 304L stainless steel was studied by in-situ microcompression test at room temperature. The deformation-induced austenite-to-martensite phase transformation occurs in {101}-oriented grains in the irradiated base metal, while deformation twinning prevails in {101}-oriented grains in the weld heat affected zone (HAZ). A high number density of irradiation-induced voids in the base metal provide sufficient nucleation sites for the austenite-to-martensite phase transformation under compression at room temperature. A deformation map is established to predict critical twinning stress for face-centered cubic (fcc) metals and alloys. Our study suggests that irradiation can tailor the deformation-induced phase transformation in austenitic stainless steels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call