Abstract

Recently, the short wavelength laser is believed to have a promising prospect in fast ignition for reducing the conflict between laser energy requirement and electron stopping range. Here we investigate the influence of laser wavelength and intensity in the angular dispersion of hot electrons. Both our theoretical model and numerical simulations show that the angular dispersion would increase rapidly with the shortening of laser wavelength due to the Weibel instability, while the laser intensity has little effect on it. These results have important implications for fast ignition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.