Abstract
In the present study, the effect of laser surface melting (LSM) on intergranular corrosion behaviour of aged austenitic stainless steels (UNS S30400, S31603, S32100 and S34700) and aged duplex stainless steels (UNS S31803 and S32950) were investigated. LSM of the aged stainless steels was carried out using a 2.5 kW CW Nd:YAG laser. The microstructure of the aged stainless steels after LSM depends on their compositions. After LSM, the aged austenitic stainless steels mainly contain austenite (γ) with some ferrite (δ) as the minor phase, but the carbide phases are completely eliminated. For the aged duplex stainless steels after LSM, δ becomes the major phase and the δ/γ phase balance is disturbed, whereas the sigma (σ) phase is eliminated. The degree of sensitization ( DOS) and corrosion morphology of the aged stainless steels before and after LSM were determined by the double loop electrochemical potentiokinetic reactivation (DL-EPR) using a potentiostat and SEM observation, respectively. Desensitization of the aged stainless steels has been successfully achieved by LSM and their intergranular corrosion resistance is found to be significantly enhanced as reflected by the decrease in DOS due to dissolution of the carbides or σ phase, which reduced Cr depletion or the possibility of solute segregation at the grain or phase boundaries, despite the presence of δ and disturbance of δ/γ phase balance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.