Abstract

The steal turbine blades, operating in steam electricity production plants are subjected to periodic circular stresses that cause fatigue failure with the passage of time. The chemical composition so steam turbine blades show that is steel 52 it has a wide range of applications, mostly in welded construction, All kinds of welded construction, wind turbines, load-lifting equipment, platform components, cranes, bridge components, and structures. This research aims to study the microstructure of these turbine blades before and after the occurrence of fatigue, and for the purpose of improvement the fatigue resistance, the blades were treated with a laser and the amount of improvement in fatigue resistance was calculated and also the change in the microstructure after laser treatment was studied. The remelting process applied with this parameter Pulse energy = 8 joules, Pulse width = 4.5 Ms., Pulse frequency = 12 Hz, Laser Average Power = 96 W, Laser peak power = 1.78 KW. The results show, after remelting process the microstructure of the specimen is smooth and increase the cyclic of fatigue comparison with specimen without leaser remelting process. So, the fatigue resistance is increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.