Abstract

AlSi10Mg alloy has been widely used in selective laser melting (SLM). However, the formation of metallurgical defects in this material during SLM process has not been studied sufficiently. In this work, different laser parameters were adopted to fabricate the specimens. The effects of volumetric energy density (VED) on the metallurgical defect, densification, phase composition and mechanical property were also comprehensively analyzed. At low VED of 37.39[Formula: see text]J/mm3, a nearly full dense sample with density of 2.602[Formula: see text]g/cm3 can be printed. The sample with maximal tensile strength of 475[Formula: see text]MPa can be printed. While with the increase of VED, the ultimate tensile strength decreases due to the formation of micro-pores. The formation mechanisms of micro-pores including gas pores and keyhole-induced pores were disclosed from the angle of alloy smelting. Better understanding of the influence mechanisms of the laser parameters on the formation of metallurgical defects is beneficial for the production of high performance SLM parts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.