Abstract

This paper presents an experimental study of the effect of laser irradiation of aqueous uranyl chloride solutions containing gold nanoparticles on the activity of the uranium series radionuclides 234Th, 234mPa, and 235U. The solutions were exposed to femtosecond Ti:sapphire laser pulses and to the second or third harmonic of a Nd:YAG laser (150-ps pulses) at a peak intensity in the medium of ∼1012 W cm-2. The activities of the radionuclides in the irradiated solutions were shown to differ markedly from their equilibrium values. The sign of the deviation depends on the laser wavelength. The measured activity deviations can be interpreted as evidence that laser exposure of nanoparticles accelerates the alpha and beta decays of the radionuclides. The observed effects are accounted for in terms of a mechanism that involves resonant enhancement of optical waves by metallic nanoparticles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.