Abstract

Laser surface melting of Ti–6Al–4V alloy under a pure nitrogen environment of 30 L/min gas flow rate, was carried out with 200–600 mJ laser beams, produced by a Nd-YAG pulsed laser at 5 mm defocused distance, and 0.5–3 mm/s sample traverse velocities. The microstructure, hardness and corrosion behaviour of the nitrided samples were examined, using scanning electron microscopy, X-ray diffractometry (XRD), microhardness measurements across the workpiece cross-section and anodic polarization tests in 2 M HCl solution.The microstructures consisted mainly of a thin continuous layer of titanium nitride followed by nearly perpendicular dendrites, and below this, a mixture of small dendrites and large needles, which had a random orientation. The denderitic structure was the TiN phase, and the needle phase and the phase of the matrix between the dendrites were nitrogen-enriched α′-Ti. The density of TiN dendrites decreased gradually towards the interface between the nitrided layer and the substrate. The melted zone showed a range of hardness of between 400–1300 Hv, the hardness being found to be related to the dendrite populations. An improvement in corrosion behaviour, associated with the presence of a good TiN coating, was observed. Also, the improved pitting corrosion resistance is obtained due to the microstructural changes after laser treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.