Abstract

Microscale laser bulge forming is a high strain rate microforming method using high-amplitude shock wave pressure induced by pulsed laser irradiation. The process can serve as a rapidly established and high precision technique to impress microfeatures on thin sheet metals and holds promise of manufacturing complex miniaturized devices. The present paper investigated the forming process using both numerical and experimental methods. The effect of laser energy on microformability of pure copper was discussed in detail. A 3D measuring laser microscope was adopted to measure deformed regions under different laser energy levels. The deformation measurements showed that the experimental and numerical results were in good agreement. With the verified simulation model, the residual stress distribution at different laser energy was predicted and analyzed. The springback was found as a key factor to determine the distribution and magnitude of the compressive residual stress. In addition, the absorbent coating and the surface morphology of the formed samples were observed through the scanning electron microscope. The observation confirmed that the shock forming process was non-thermal attributed to the protection of the absorbent coating.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.