Abstract

Abstract The surface and microstructural characteristics of 3D printed parts play a significant role under mechanical loading. The authors have explored the effect of laser energy densities on the surface morphology, microstructure and mechanical behaviour of 17-4 precipitation hardened stainless steel fabricated under the direct metal laser melting technique. The considered processing parameters were laser energy density and its technical parameters: laser power, layer thickness, hatch spacing and scanning speed. The mechanical and metallurgical properties of the as-printed samples appeared better than the wrought counterpart due to the higher densification level (99.74 %) induced by the rotating scanning strategy. X‐ray diffraction revealed the presence of both the martensitic α phase and austenitic γ phase in the as-printed sample. There is no significant anisotropy in the mechanical behaviour as the build direction has a random texture with a fine columnar grain structure. The high laser energy density with low layer thickness results in an excellent surface finish. The tensile strength (1180 MPa) and the elongation for the as-printed sample (45.0 %) were considerably more significant than that for the wrought sample (1160 MPa and 26.0 %), which is attributed to the combination of low and high-angle boundaries, as confirmed by the electron backscatter diffraction results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.