Abstract

The effect of laser (pulse repetition frequency, pulse energy and exposure time) and environmental parameters (pH, NaCl concentration and wet or dry samples) of Nd:YAG laser decontamination of stainless steel inoculated with Escherichia coli, Staphylococcus aureus and Listeria monocytogenes was investigated. Stainless steel discs were inoculated with the bacterial samples and exposed to laser energy densities to about 900 J cm(-2). These inactivation curves allowed selection of laser parameters for two-level multifactorial designed experiments, the results of which allowed comparisons to be made between effects of individual and combined parameters on the laser inactivation efficiency. Escherichia coli was inactivated most effectively as a wet film with L. monocytogenes and S. aureus showing similar response. For the multifactorial experiments all laser parameters were significant and were smallest for S. aureus as a wet film. pH and NaCl concentration had little effect on the efficacy of laser inactivation but dry or wet states and all laser parameters were significant. Such systems may prove to be applicable in industrial processes where stainless steel may be contaminated with acidic solutions or salt, e.g. in the food industry with laser inactivation seeming to be independent of these parameters. Parameters have been identified that allow optimization of the treatment process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.