Abstract

The aim of the present work is to investigate the effect of Lanthanum surface addition on the oxidation behaviour of the AISI 304 stainless steel, in air, at 1000°C. The in situ X-ray diffraction (XRD) analyses on the blank steel reveal that after the first 10h oxidation, a change in the structural composition of the oxide scale occurs. During the first ten hours oxidation an initial growth of chromia and Mn1,5Cr1,5O4 is observed. After 10 h oxidation, chromia is not detected anymore and iron-containing oxides such as hematite (Fe2O3) and iron chromite (FeCr2O4) are observed in the outer part of the scale. With blank AISI 304 specimens, the iron-containing oxides are generally not very protective and show severe spallation during cooling to room temperature due to thermal stresses. They do not allow a good adherence of the corrosion layer under thermal cycling. On the Lanthanum coated AISI 304 Stainless Steel the oxidation rate is 10 times lower. In situ XRD analyses show the absence of iron containing oxides. It reveals the formation of a fine convoluted Cr2O3 layer associated with the formation of the mixed oxides Mn1,5Cr1,5O4 and LaCrO3. LaCrO3 is found to be located at the oxide/steel interface. Our results show that, even though the scale formed under isothermal conditions is not composed of iron containing oxides, Lanthanum sol-gel coating does not prevent spallation during thermal cycling at 1000°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.