Abstract

The enhancement of X-band spin–lattice and spin–spin relaxation rates for the nitroxide tempone (2,2,6,6-tetramethyl-4-oxo-piperidin-1-oxyl) in 1:1 water:glycerol by Dy3+, Er3+, Tm3+ or Co2+ was examined between 20 and 200 K. Nitroxide relaxation rates were measured by two-pulse spin echo and three-pulse inversion recovery. The impact of the rapidly relaxing metal aquo ions on 1/T1 of the nitroxide increases in the order Co2+ ~ Er3+ < Dy3+ < Tm3+. The maximum spin–lattice relaxation enhancement occurs at about 35 K for Dy3+, 40 K for Er3+, and 60 K for Co2+. When the metal ion is bound to the chelator diethylenetriamine pentaacetic acid (DTPA) the maximum enhancements for Dy(DTPA)2− and Er(DTPA)2− shift to about 80 K. The maximum enhancement is proposed to occur when 1/T1 for the metal ion is approximately equal to the resonance frequency for the nitroxide. Interaction with the paramagnetic metal ion causes a much larger fractional change in 1/T1 than for 1/T2. Below about 20 K the enhancement of nitroxide 1/T2 increases, which is attributed to relaxation of the metal ions at rates comparable to the electron–electron dipolar coupling, expressed in frequency units.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.