Abstract

The magnetic characteristics of electromagnetic steel sheets used for motors are evaluated under ideal sinusoidal excitation. However, in actual equipment driving, excitation by pulse-width modulation (PWM) waves is the mainstream method. Therefore, it is necessary to clarify how the magnetic properties used in motors are changed by sinusoidal excitation and inverter excitation. To clarify the magnetic properties of the laminated core by inverter excitation, samples with different core sizes were prepared and the effects on the magnetic properties were then investigated. The magnetic properties were measured by changing only the input voltage VDC while maintaining the carrier frequency and modulation factor constant. As the results, the iron loss values of the small, medium, and large samples with inverter excitation were 6.05, 9.58, and 11.62 W/kg, respectively. The iron losses of the small, medium, and large toroidal cores with inverter excitation increased by 124.9, 256.1, and 332.0%, respectively, compared with the iron loss of each toroidal core with sinusoidal excitation. The larger the body, the higher the required voltage and iron loss. It can be inferred that a larger amount of energy was required to excite a larger toroidal core. This was because the change in magnetic flux density per unit time of the large toroidal core was greater than that of other cores. This indicates that the large toroidal core generated larger eddy currents than other cores. Therefore, it is possible to say that large toroidal cores generate greater eddy current losses than other cores.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call