Abstract

BackgroundThe positive antimicrobial effects of increasing concentrations of thiocyanate (SCN-) and H2O2 on the human peroxidase defence system are well known. However, little is known about the quantitative efficacy of the human peroxidase thiocyanate H2O2 system regarding Streptococcus mutans and sanguinis, as well as Candida albicans. The aim of this study was to evaluate the effect of the enzyme lactoperoxidase on the bactericidal and fungicidal effectiveness of a thiocyanate-H2O2 combination above the physiological saliva level. To evaluate the optimal effectiveness curve, the exposure times were restricted to 1, 3, 5, and 15 min.ResultsThe bactericidal and fungicidal effects of lactoperoxidase on Streptococcus mutans and sanguinis and Candida albicans were evaluated by using two test mixtures of a 2.0% (w/v; 0.34 M) thiocyanate and 0.4% (w/v; 0.12 M) hydrogen peroxide solution, one without and one with lactoperoxidase. Following the quantitative suspension tests (EN 1040 and EN 1275), the growth of surviving bacteria and fungi in a nutrient broth was measured. The reduction factor in the suspension test without lactoperoxidase enzyme was < 1 for all three tested organisms. Thus, the mixtures of 2.0% (w/v; 0.34 M) thiocyanate and 0.4% (w/v; 0.12 M) hydrogen peroxide had no in vitro antimicrobial effect on Streptococcus mutans and sanguinis or Candida albicans. However, the suspension test with lactoperoxidase showed a high bactericidal and fungicidal effectiveness in vitro.ConclusionThe tested thiocyanate and H2O2 mixtures showed no relevant antimicrobial effect. However, by adding lactoperoxidase enzyme, the mixtures became not only an effective bactericidal (Streptococcus mutans and sanguinis) but also a fungicidal (Candida albicans) agent.

Highlights

  • The positive antimicrobial effects of increasing concentrations of thiocyanate (SCN) and H2O2 on the human peroxidase defence system are well known

  • A new dentifrice formulated on these results showed the same effects regarding plaque and gingivitis prevention in comparison to a benchmark product containing triclosan [33]

  • The reduction factors (RF) of the test suspensions without and with LPO on the viability of Streptococcus mutans, Streptococcus sanguinis, and Candida albicans at different time points (1, 3, 5, and 15 min) are shown in tables 1, 2 &3

Read more

Summary

Introduction

The positive antimicrobial effects of increasing concentrations of thiocyanate (SCN) and H2O2 on the human peroxidase defence system are well known. It would seem better to stimulate or support the innate host defence system, such as the oral peroxidase-thiocyanate-hydrogen peroxide system. SPO is almost identical to the milk enzyme lactoperoxidase (LPO) [16,17] All these peroxidase enzymes catalyze the oxidation of the salivary thiocyanate ion (SCN-) by hydrogen peroxide (H2O2) to OSCN- and the corresponding acid hypothiocyanous acid (HOSCN), O2SCN-, and possibly O3SCN- [18], which have been shown to inhibit bacterial [19,20,21,22,23], fungal [24], and viral viability [25]. The loss of OSCN- over time is based on decomposition, not on the reaction with bacteria [29]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call