Abstract
The barium strontium titanate (BaxSr1–xTiO3) glass–ceramics doped with different content of La were prepared via controlled crystallization. Phase compositions, microstructure and dielectric behaviors were investigated systematically. The results revealed that La2O3 additives had little influence on the dielectric constant but significantly changed the microstructure of the glass–ceramics, which led to improved breakdown strength (BDS). The optimized energy-storage density of 3.18 J/cm3 was achieved in the glass–ceramics with 1.0 wt% La2O3 content which is 2.56 times higher than pure BST glass–ceramics, suggesting glass–ceramics of this composition could be an attractive candidate for energy-storage applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.