Abstract
In the present work, one dimensional La0.8Sr0.2Co0.2Fe0.8O3−δ (LSCF) nanofibers with the mean diameter of about 100nm prepared by electrospinning were deposited on Gd0.2Ce0.8O1.9 (GDC) electrolyte followed by sintering to form one dimensional LSCF nanofiber cathode. And LSCF/GDC composite cathodes were formed by introducing GDC phases into LSCF nanofiber scaffold using infiltration method. The polarization resistances for the composite cathode with an optimal LSCF/GDC mass ratio of 1/0.56 are 0.27, 0.14 and 0.07Ωcm2 at 650, 700 and 750°C, respectively, which are obviously smaller than 2.26, 0.78 and 0.29Ωcm2 of pure LSCF nanofiber cathode. And the activation energy is 1.194eV, which is much lower than that of pure LSCF nanofiber cathode (1.684eV). These results demonstrate that the infiltration of GDC into LSCF nanofiber scaffold is an effective approach to achieve high performance cathode for solid oxide fuel cells (SOFCs). In addition, the performance of composite cathode in this work was also compared with that of our previous nanorod structured LSCF/GDC composite cathode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Progress in Natural Science: Materials International
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.