Abstract

Electron cyclotron resonance radio frequency (ECR-rf) hybrid krypton-diluted oxygen plasmas were used to pattern the surfaces of diamond films with the assistance of a physical mask, while optical emission spectroscopy was employed to characterize the plasma. It was found that with krypton dilution the etching rate decreased, and also the aspect ratios of nanotips formed in micro-holes were significantly modified. The oxygen atomic densities were estimated by oxygen atom optical emission and argon actinometry. Under a microwave power of 300 W and rf bias of −300 V, the absolute density of ground-state oxygen atoms decreased from 1.3×1012 cm−3 to 1.4×1011 cm−3 as the krypton dilution ratio increased to 80%, accompanied by the decrease in the plasma excitation temperature. It is concluded that oxygen atoms play a dominant role in diamond etching. The relative variations in the horizontal and vertical etching rates induced by the addition of krypton are attributed to the observations of thicker nanotips at a high krypton dilution ratio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call