Abstract

BackgroundIn colorectal cancer (CRC), 40–60% of patients develop metastasis. The epithelial–mesenchymal transition (EMT) is a pivotal and intricate process that increases the metastatic potential of CRC. The aim of this study was to investigate the effect of Korean Red Ginseng extract (RGE) on colorectal metastasis through inhibition of EMT and the metastatic abilities of CRC cells. MethodsTo investigate the effect of RGE on the metastatic phenotypes of CRC cells, CT26 and HT29 cells were evaluated by using an adhesion assay, a wound-healing assay, an invasion assay, zymography, and real-time reverse transcription–polymerase chain reaction. Western-blot analysis was conducted to elucidate the molecular mechanisms of RGE, which showed an inhibitory effect on the transforming growth factor-β1 (TGF-β1)-induced EMT in HT29 cells. Additionally, the antimetastatic effect of RGE was evaluated in a mouse model of lung metastasis injected with CT26 cells. ResultsRGE decreased the adhesion and migration ability of the CT26 cells and TGF-β1-treated HT29 cells. The invasion ability was also reduced by RGE treatment through the inhibition of matrix metalloproteinase-9 expression and activity. Moreover, RGE suppressed the TGF-β1-induced EMT via TGF-β1/Smad-signaling-mediated Snail/E-cadherin expression in HT29 cells and lung tissue in CT26 tumor-bearing mice. ConclusionOur results demonstrated that RGE inhibited colorectal lung metastasis through a reduction in metastatic phenotypes, such as migration, invasion, and the EMT of CRC cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.