Abstract

How genomic DNA methylation and methyl CpG-binding protein 2 (MeCP2) gene expression affect the pathogenesis of systemic lupus erythematosus (SLE) remains poorly understood. Traditional Chinese medicine has a unique effect in the treatment of SLE patients. This study aimed to investigate the effect of Jieduquyuziyin prescription (JP)-treated rat serum on the gene expression of MeCP2 in Jurkat T cells and its role in the pathogenesis of SLE. Jurkat T cells were harvested, and drug-containing serum was prepared. The ferulic acid and paeoniflorin content in the drug-containing serum were determined by liquid chromatography-mass spectrometry (LC-MS/MS). 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assays were used to screen the optimal concentration of drug-containing serum. The DNA methylation level in Jurkat T cells was detected with a Methylamp™ Total DNA Methylation Kit. The methylation status of the MeCP2 promoter region was detected using bisulfite modification and methylation-specific PCR (MSP). Real-time PCR was used to measure MeCP2 mRNA expression. Western blotting and flow cytometry were done to detect MeCP2 protein expression in Jurkat cell nuclei. Paeoniflorin and ferulic acid were detected in the drug-containing serum of JP-treated rats. The results showed that cell growth was affected in the high serum-containing drug group. The experimental results showed that JP and prednisone acetate increased the level of genomic DNA methylation and MeCP2 gene promoter region methylation in Jurkat cells. MeCP2 mRNA and protein levels were also increased in the JP and prednisone acetate groups. Furthermore, flow cytometry revealed that the expression of MeCP2 protein in Jurkat T cell nuclei was higher in the drug group than the blank control group, and these results were consistent with the western blot analysis results. Our study found that there is a negative correlation between drug-containing serum and cell survival rate. JP upregulated the levels of DNA methylation, MeCP2 mRNA and protein as effectively as prednisone acetate and thus may activate the MeCP2 gene by increasing the methylation level, thereby inhibiting the pathogenesis of SLE. Therefore, JP may potentially be used to treat SLE patients. The Jurkat T lymphocyte in vitro experiments provided a foundation to study the effects of JP on the lupus mouse CD4+ T cell methylation mechanism and to further explore the pathogenesis of SLE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.