Abstract

Isoxazole analogues derived from the neolignans veraguensin, grandisin, and machilin G were previously synthesized with different substitution patterns through the bioisosterism strategy. These compounds were tested on intracellular amastigotes of Leishmania (Leishmania) amazonensis; the derivatives proved to be active against intracellular amastigotes, with IC50 values ranging from 0.4 to 25μM. The most active analogues were 4', 14', 15', and 18', with IC50 values of 0.9, 0.4, 0.7, and 1.4μM, respectively, showing high selectivity indexes (SI=277.0; 625.0; 178.5 and 357.1). Overall, the isoxazole analogues did not induce nitric oxide (NO) production by infected cells; there was no evidence that NO influences the antileishmanial mechanism of action, except for compound 4'. Trimethoxy groups as substituents seemed to be critical for antileishmanial activity. The SAR study demonstrated that the isoxazole compounds were more active than 1,2,3-triazole compounds with the same substitution pattterns, demonstrating the importance of the bioisosterism strategy in drug design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call