Abstract

BackgroundPatients undergoing hemodialysis treatment have a six-fold increased risk for stroke relative to the general population. However, the effect of hemodialysis on cerebral blood flow is poorly studied and confounding factors like blood pressure and ultrafiltration as well as temperature changes have rarely been accounted for. The aim of our study was to use state-of-the-art technology to evaluate the effect of a single dialysis session on cerebral perfusion as well as on vascular stiffness.MethodsChronic hemodialysis patients (7 male/3 female, mean age 58 years) were recruited. Cerebral blood flow and arterial pulse wave velocity were measured before and immediately after a hemodialysis session. To exclude effects of volume changes we kept ultrafiltration to a minimum, allowing no change in body weight. Isothermic conditions were maintained by using the GENIUS single-pass batch-dialysis system with a high-flux polysulfone dialyser. Cerebral blood flow was measured by contrast-enhanced computed tomography. Pulse wave velocity was measured using the SphygmoCor (AtCor Medical, USA) device by a single operator.ResultsThis study shows for the first time that isovolemic, isothermic hemodialysis neither affected blood pressure or heart rate, nor total or regional cerebral perfusion. There was also no change in pulse wave velocity.ConclusionsMechanisms other than the dialysis procedure itself might be causative for the high incidence of ischemic strokes in this patient population. Moreover, the sole removal of uremic toxins does not lead to short-term effects on vascular stiffness, underlying the importance of volume control in this patient population.

Highlights

  • The high prevalence of cardiovascular disease in chronic kidney disease (CKD) stage 5 D, i.e. dialysis patients has been known for decades [1]

  • The effect of a single hemodialysis on arterial stiffness, the result of a complex interaction between structural and functional changes in the vessel wall, has not been the focus of clinical research, making it difficult to dissect the importance of abnormal arterial calcification from volume overload uremic toxins and various endocrine abnormalities [9,10]

  • Due to the scarce data about this topic, the unreliable Doppler ultrasound studies of cerebral blood flow, the aim of our study was to analyze the cerebral blood flow and the pulse wave velocity of patients with CKD 5 D before and after a single hemodialysis using the gold standard for the cerebral blood flow measurement, i.e. computer tomography based cerebral perfusion

Read more

Summary

Introduction

The high prevalence of cardiovascular disease in chronic kidney disease (CKD) stage 5 D, i.e. dialysis patients has been known for decades [1]. Functional test like the measurement of pulse wave velocity have been shown to be independent predictor of cardiovascular morbidity and mortality in this patient population [2,3]. Due to the scarce data about this topic, the unreliable Doppler ultrasound studies of cerebral blood flow, the aim of our study was to analyze the cerebral blood flow and the pulse wave velocity of patients with CKD 5 D before and after a single hemodialysis using the gold standard for the cerebral blood flow measurement, i.e. computer tomography based cerebral perfusion. The aim of our study was to use state-of-the-art technology to evaluate the effect of a single dialysis session on cerebral perfusion as well as on vascular stiffness

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call