Abstract
2.25Cr–1Mo–0.25V base metal (BM) and welded metal (WM) with different temper embrittlement states were obtained by isothermal temper embrittlement test. The ductile–brittle transition temperature and the carbide size of temper embrittled 2.25Cr–1Mo–0.25V BM and WM increased with the isothermal tempering time. The increase in temper embrittlement time leads to a decrease in yield strength (YS) and ultimate tensile strength (UTS). Hydrogen embrittlement (HE) can decrease the ductility and increase YS and UTS of the material. The hydrogen embrittlement sensitivity and microstructure analysis both show a combined effect of HE and temper embrittlement. The deeper the temper embrittlement, the more sensitive the material to HE. When the hydrogen content in the material is low, the WM is less susceptible to HE due to its welding defects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.