Abstract
Purpose: This study aims to investigate the inhibitory effect and regulatory mechanism of melanin biosynthesis in mouse-derived B16 melanoma cells (B16F10), using a light emitting diode (LED) light source irradiation device of three single wavelengths (630, 470, 525 nm) for irradiation of visible light (green, red, blue). Methods: Using three single-wavelength LED light sources, cytotoxicity, tyrosinase activity, and melanin biosynthesis were measured. Results: LED irradiation with green, red, and blue wavelengths did not show cytotoxicity or changes in melanin content at each wavelength. When the wavelength was irradiated alone, the blue and green LED wavelengths caused a decrease in tyrosinase activity, blocking the intracellular signaling mechanism that caused the increase in tyrosinase activity induced by α-melanocyte-stimulating hormone (α-MSH). In addition, protein kinase A cascade, an intracellular signaling mechanism that causes an increase in tyrosinase activity induced by α-MSH, was blocked, as it was inhibited with cyclic adenosine monophosphate (cAMP). Red series wavelength LED did not lead to any reaction. Conclusion: The irradiation of blue and green series wavelength LEDs among visible lights controls the mechanism involved in melanin formation in skin cells and results in skin whitening, which suggests that it can be effective in the whitening and cosmetic industry using LED in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.