Abstract

We investigate the influence of neutron irradiation on the fracture-mechanical behaviour of ITER-specification conform stress relieved tungsten bar. The neutron irradiation of miniaturized Disc-shaped Compact Tension specimens with electrical discharge machined notches was performed in the Material Testing High Flux BR2 reactor of SCK CEN in Mol. Damage doses close to 1 dpa were achieved at multiple irradiation temperatures of 400, 600 and 1000°C. Suppression of thermal neutrons fluence by applying stainless steel capsules resulted in reduction of Re (Os) content down to fusion application relevant level of 2 at% (0.2 at%). Neutron irradiation strongly impacted fracture-mechanical behaviour of the material. Depending on the irradiation temperature, the DBTT increases by about 650°C or even higher as has been deduced on the basis of the load-displacement curve analysis. The degradation of the mechanical properties is attributed to the alteration of the microstructure and fracture mode. The results are compared with the fracture-mechanical data on irradiated tungsten obtained previously in the course of same neutron irradiation campaign.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.