Abstract
ABSTRACTA single-phase fcc high-entropy alloy (HEA) of 20%Cr–40%Fe–20%Mn–20%Ni composition and its strength with yttrium and zirconium oxides version was irradiated with 1.4 MeV Ar ions at room temperature and mid-range doses from 0.1 to 10 displacements per atom (dpa). Transmission electron microscopy (TEM), scanning transmission electron microscopy with energy dispersive X-ray spectrometry (STEM/EDS) and X-ray diffraction (XRD) were used to characterise the radiation defects and microstructural changes. Nanoindentation was used to measure the ion irradiation effect on hardening. In order to understand the irradiation effects in HEAs and to demonstrate their potential advantages, a comparison was performed with hardening behaviour of 316 austenitic stainless steel irradiated under an identical condition. It was shown that hardness increases with irradiation dose for all the materials studied, but this increase is lower in high-entropy alloys than in stainless steel.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.