Abstract

IntroductionMany studies have demonstrated that iron deficiency modifies the normal function of the central nervous system (CNS) and alters cognitive abilities. When cellular damage occurs in the CNS, neuroprotective mechanisms, such as the production of neurotrophic factors, are essential in order for nervous tissue to function correctly. Insulin-like growth factor II (IGF-II) is a neurotrophic factor that was recently shown to be involved in the normal functioning of cognitive processes in animal models. However, the impact of iron deficiency on the expression and function of this molecule has not yet been clarified. MethodsMixed primary cell cultures from the CNS were collected to simulate iron deficiency using deferoxamine. The expression of IGF-I, IGF-II, IGF-IR, and IGF-IIR was determined with the Western blot test. ResultsWe observed increased expression of IGF-II, along with a corresponding decrease in the expression of IGF-IIR, in iron-deficient (DFe) mixed primary cell cultures. We did not observe alterations in the expression of these proteins in isolated microglia or neuronal cultures under the same conditions. We did not detect differences in the expression of IGF-I and IGF-IR in DFe cultures. ConclusionsIn vitro iron deficiency increases the expression of IGF-II in mixed glial cell cultures, which may have a beneficial effect on brain tissue homeostasis in a situation in which iron availability is decreased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call