Abstract

Copper–nickel alloys have been used in many applications in marine environments, because of their excellent corrosion and biofouling resistance. In this study, the effects of iron as an alloying element on the corrosion behaviour of copper–10 wt-% nickel alloy in artificial saline solutions and natural sea water were investigated. Synthetic copper–nickel alloys were prepared in an induction furnace under an argon–7 vol.-% hydrogen atmosphere in cylindrical boron nitride crucibles. They were then homogenised at 950°C for 10 h under the same protective atmosphere. Linear sweep polarisation, cyclic polarisation, Tafel extrapolation and cyclic voltammetry techniques were performed in this investigation. Following the electrochemical measurements, the corrosion products and the passive film were analysed using a field emission scanning electron microscope (FE-SEM), electron probe microanalysis, energy dispersive spectrometry (EDS), wavelength dispersive spectrometry (WDS) and X-ray diffraction (XRD). The electrochemical behaviour of the synthetic Cu–Ni–Fe alloys depends on maintaining iron in a single phase in the solid solution (the maximum amount of iron that can be used was 1·5 wt-%). Quenching improves the electrochemical behaviour of synthetic Cu–Ni–Fe alloys containing relatively high iron content. The outer layer of the passive film is porous in the absence of iron, but when iron is added, the pores disappear and cracks appear. When no sulphate is present in the solution, the passive film formed on synthetic Cu–Ni–Fe alloys consists entirely of chlorides, and Fe2O3. In the presence of sulphate, FeS and NiS were detected in the corrosion film.On a utilisé les alliages de cuivre–nickel à de nombreuses fins en milieux marins, grâce à leur excellente résistance à la corrosion et à l’incrustation biologique. Dans cette étude, on a examiné l’effet du fer en tant qu’élément d’alliage sur le comportement de corrosion d’un alliage de cuivre–10% en poids de nickel dans des solutions salines artificielles et dans de l’eau de mer naturelle. On a préparé des alliages synthétiques de cuivre–nickel dans un four à induction dans une atmosphère d’argon–7% en volume d’hydrogène dans des creusets cylindriques de nitrure de bore. On les a ensuite homogénéisés à 950°C pendant 10 heures sous la même atmosphère protectrice. Dans cette investigation, on a utilisé des techniques de polarisation linéaire à balayage, de polarisation cyclique, d’extrapolation de Tafel et de voltampérométrie cyclique. Après les mesures électrochimiques, on a analysé les produits de corrosion et le film passif en utilisant un microscope à balayage électronique à champs par émission d’ions (FE-SEM), la microanalyse par électrons, la spectrométrie des rayons X à dispersion d’énergie (EDS), la spectrométrie dispersive en longueur d’onde (WDS) et la diffraction des rayons X (XRD). Le comportement électrochimique des alliages synthétiques de Cu-Ni-Fe dépend du maintien du fer en une phase unique dans la solution solide (la quantité maximale de fer que l’on pouvait utiliser étant de 1·5% en poids). La trempe améliore le comportement électrochimique des alliages synthétiques de Cu–Ni–Fe ayant une teneur relativement élevée en fer. La couche extérieure du film passif est poreuse en l’absence de fer, mais lorsque l’on ajoute du fer, les pores disparaissent et des fissures apparaissent. Lorsqu’il n’y a pas de sulfate dans la solution, le film passif formé sur les alliages synthétiques de Cu–Ni–Fe consiste entièrement en chlorures et en Fe2O3. En présence de sulfate, on détecte du FeS et du NiS dans le film de corrosion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.