Abstract

ABSTRACTBayfol (PC-PBT blend film) is a class of polymeric solid-state nuclear track detector which has a lot of applications in several radiation detection fields. It is a bisphenol-A polycarbonate PC blended with polybutylene terephthalate PBT. Bayfol/Palladium (PC-PBT/Pd) nanocomposite films have been deposited using the molding technique. It is worth mentioning that this report is almost the first one dealing with the topic of the changes of physical properties of Bayfol/Pd nanocomposite due to laser exposure. Samples from PC-PBT/Pd (5 wt%) nanocomposite were exposed to IR-pulsed laser of 5-W power, capable of producing 2000 pulses per second with pulse duration of 200 ns at 904 nm. The laser fluences were in the range 2–25 J/cm2. The resultant modifications in the exposed nanocomposite samples have been studied as a function of fluence using different characterization techniques such as X-ray diffraction (XRD), UV spectroscopy and color difference studies. The results indicate the proper dispersion of Pd nanoparticles in the PC-PBT matrix that causes a strong intermolecular interaction between Pd and PC-PBT, resulted in an increase in refractive index and the amorphous phase. Also, it is found that the laser exposure reduces the optical energy gap that could be attributed to the increase in structural disorder of the exposed PC-PBT/Pd nanocomposites due to crosslinking. Further, the color intensity ΔE, which is the color difference between the exposed samples and the non-exposed one, was increased with increasing the laser fluence, convoyed by a significant increase in the green and yellow color components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call