Abstract

Ionomycin is a calcium ionophore that induces release of calcium ions (Ca(2+)) from cellular storage to cytoplasm and Ca(2+) influx from the outside of the cell. We investigated the effect of ionomycin on endoplasmic reticulum (ER)-Golgi transport in the vesicular stomatitis virus glycoprotein (VSV-G) system. Ionomycin inhibited transport of VSV-G in a concentration-dependent manner in baby hamster kidney (BHK) cells and HeLa cells. Half-maximum inhibition was observed at 5 μM. The inhibitory effect of ionomycin was not dependent on the cytoplasmic portion. Chelation of Ca(2+) in culture medium did not affect transport efficiency, but co-incubation with ionomycin completely shut off transport. These findings highlight the importance of Ca(2+) release from cellular storage. Because the inhibitory effect of ionomycin was expected to be dependent on mutual interaction of VSV-G and the ER chaperone calnexin, we further investigated interaction kinetics. In HeLa cells but not BHK cells the interaction of VSV-G and calnexin was prolonged in the presence of ionomycin. Taken together, the present results indicate that, by releasing Ca(2+) from cellular storage, ionomycin inhibits ER-Golgi transport by interfering with the release of VSV-G from calnexin in HeLa cells. A mechanism of cell type-dependent ER-Golgi transport regulation was revealed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.