Abstract

Melittin is a cationic, amphipathic, hemolytic peptide composed of 26 amino acid residues. It is intrinsically fluorescent due to the presence of a single tryptophan residue, which has been shown to be crucial for its hemolytic activity. It undergoes a structural transition from a random coil monomer to an alpha-helical tetramer at high ionic strength. Although the aggregation behavior of melittin in solution is well characterized, dynamic information associated with the aggregation of melittin is lacking. In this paper, we have monitored the effect of ionic strength on the dynamics and aggregation behavior of melittin in aqueous solution by utilizing sensitive fluorescence approaches, which include the red edge excitation shift (REES) approach. Importantly, we demonstrate that REES is sensitive to the self-association of melittin induced by ionic strength. The change in environment experienced by melittin tryptophan(s) is supported by changes in fluorescence emission maximum, polarization, and lifetime. In addition, the accessibility of the tryptophan residue was probed by fluorescence quenching experiments using acrylamide and trichloroethanol as soluble and hydrophobic quenchers, respectively. Circular dichroism studies confirm the ionic strength-induced change in the secondary structure of melittin. Taken together, these results constitute the first report showing that REES could be used as a sensitive tool to monitor the aggregation behavior of melittin in particular and other proteins and peptides in general.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.