Abstract

The thin film of poly(methyl methacrylate) (PMMA) has been widely studied as host in a polymer electrolyte system due to its good mechanical stability towards lithium electrode. However, the brittle property of this film creates additional resistance for the ionic conduction. The addition of ionic liquid (IL) has been noticed to improve the brittleness of the film. In addition, its ionic conductivity can also be enhanced, but no free standing film can be obtained when higher amount of IL was added. Therefore, in this study, 1-methyl-3-pentamethyldisiloxymethylimidazolium bis(trifluoromethylsulfonyl)imide,[(SiOSi)C1C1im][NTf2], was incarcerated during free radical polymerization of MMA. Interestingly, this newly synthesized PMMA (PMMAIL) gives a flexible and transparent film with ionic conductivity of ∼10−7 S/cm at room temperature. The structural properties of this PMMAIL were further investigated using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and optical microscope (OM).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.