Abstract

The nonlinear features of dust ion-acoustic shock waves (DIASWs) in a magnetoplasma containing cold positive ions, nonextensive electrons, and immobile negatively charged dust grains taking into account the cold ion kinematic viscosity are investigated. The reductive perturbation technique is used to derive a Zakharov-Kuznetsov-Burgers (ZK-Burgers). It is found that the fundamental properties of the DIASWs are significantly modified by the different system parameters such as the nonextensive parameter, the ion gyrofrequency, the dust concentration, the viscosity parameter, and the direction cosines. Also, the polarities (positive and negative shocks) of the potential are found to exist in the plasma under consideration. The implications of our results may be used in understanding the acoustic shock waves propagation in laboratory and space plasmas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.